

Stabilizer models of gapped quantum phases of matter

Quantum **5**, 612

PRX Quantum **3**, 010353

PRX Quantum **3**, 030326

Quantum 7, 1137

arXiv:2405.02390

arXiv:2411.04993

Tyler Ellison

(he/him)

Collaborators

Yu-An Chen

Meng Cheng

Arpit Dua

Tim Hsieh

Kohtaro Kato

Zi-Wen Liu

Julio Magdalena de la Fuente

Nat Tantivasadakarn

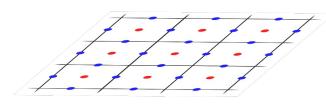
Wilbur Shirley

Dom Williamson

Motivations

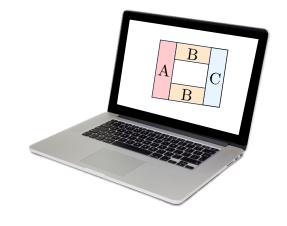
Which quantum phases can be described within the stabilizer formalism?

New quantum errorcorrecting codes



- Improve robustness to errors
- Reduce overheads
- Address limitations of hardware

Computation and simulation-friendly models



Ex: topological entanglement negativity

Assess quantum complexity of the phase

65/100

• Identify obstructions to capturing universal properties with stabilizer states

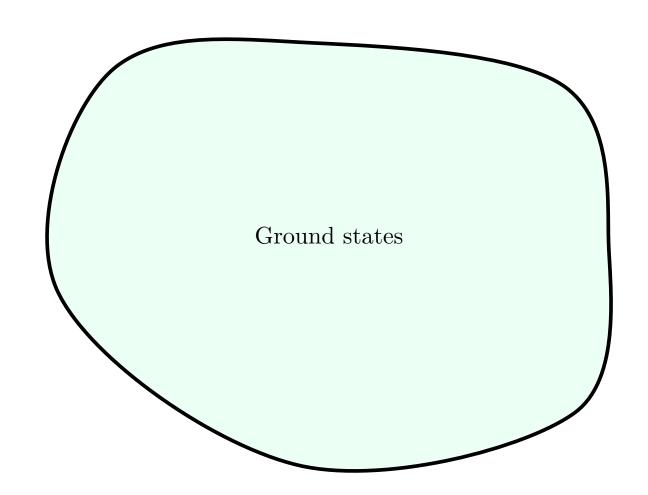
Outline

- Gapped quantum phases of matter
- Anyon theories
- No-go theorems for the stabilizer formalism
- Go-around theorems:
 - composite-dimensional qudits, continuous variables, holographic approach, mixed states
- Open questions

Gapped quantum phases of matter

Which states?

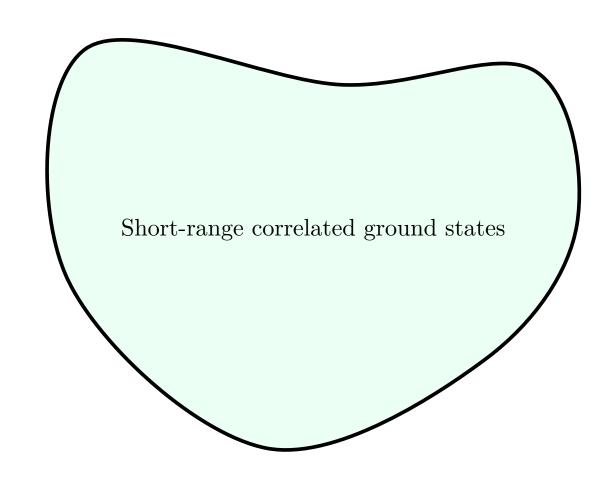
- Ground states of Hamiltonians:
 - 1. Geometrically local terms
 - 2. Gapped (in thermodynamic limit)



Gapped quantum phases of matter

Which states?

- Ground states of Hamiltonians:
 - 1. Geometrically local terms
 - 2. Gapped (in thermodynamic limit)
- Short-range correlations* (rules out GHZ)

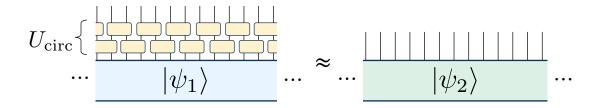


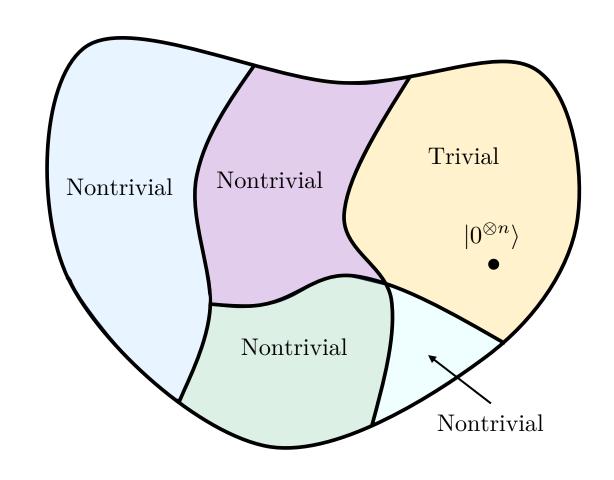
^{*} $\langle \psi | \mathcal{O}_i \mathcal{O}_j | \psi \rangle - \langle \psi | \mathcal{O}_i | \psi \rangle \langle \psi | \mathcal{O}_j | \psi \rangle \to 0$, for all local $\mathcal{O}_i, \mathcal{O}_j$

Gapped quantum phases of matter

Equivalence relation:

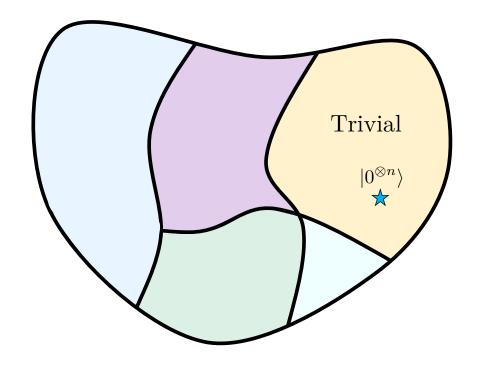
 $|\psi_1\rangle \sim |\psi_2\rangle$ if there exists a constant-depth* circuit such that $U|\psi_1\rangle = |\psi_2\rangle$





*More generally, polylog-depth

Main question

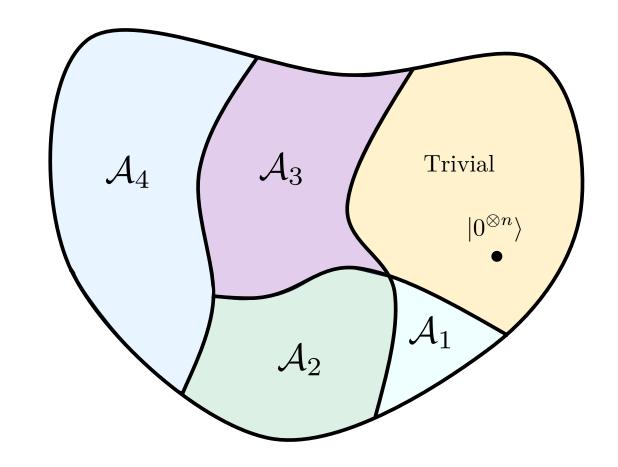


Which phases admit a stabilizer state? Which phases have universal properties that can be captured by the stabilizer formalism?

Gapped quantum phases of matter in 2D

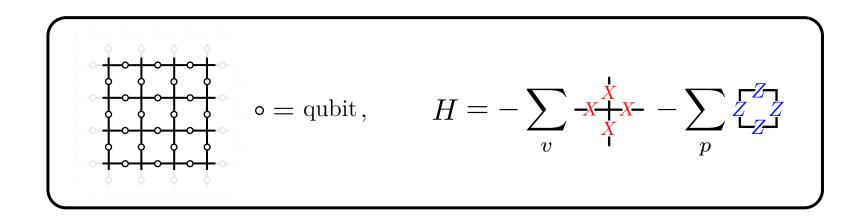
Classification:*

• Anyon theories! (modular tensor categories)

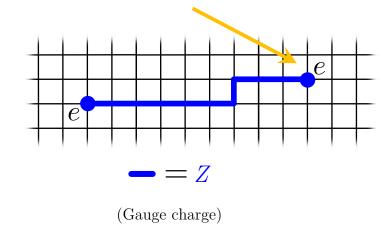


^{*}Up to stacking with E_8 states

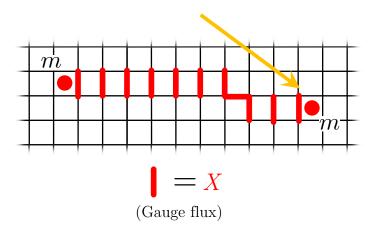
Surface code anyons



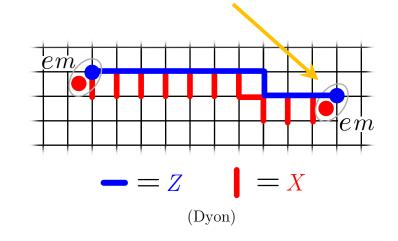
Violates vertex term



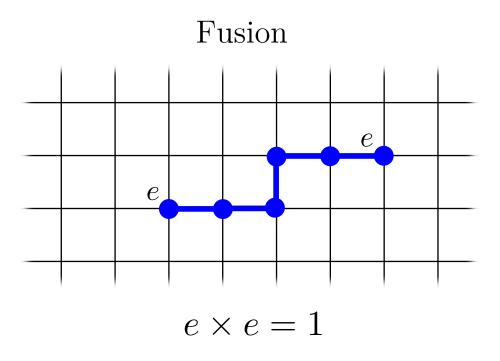
Violates plaquette term



Violates both vertex and plaquette terms



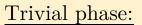
Surface code anyons properties



Deterministic fusion → "Abelian anyons"

Non-deterministic fusion → "non-Abelian anyons" No stabilizer models

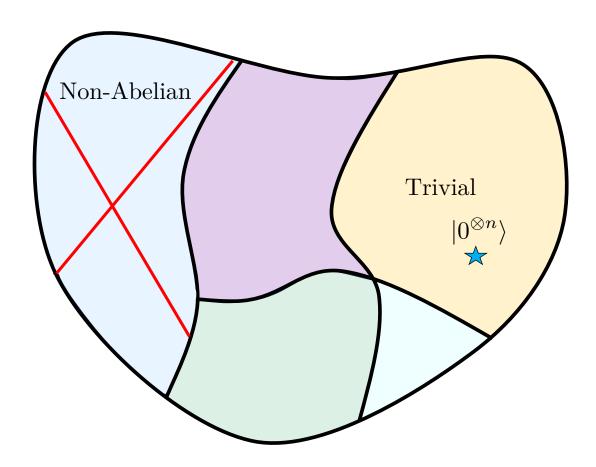
Which phases admit a stabilizer state?



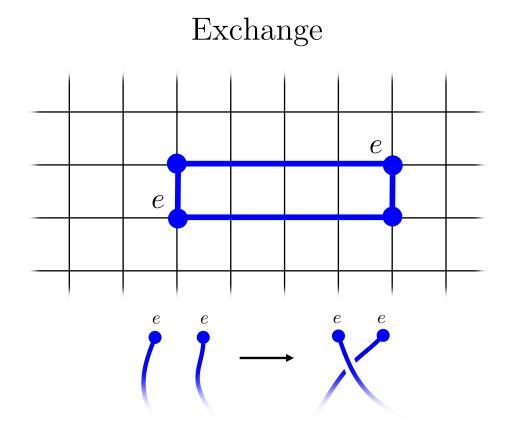
Any computational basis state

Phases with non-Abelian anyons:

Cannot reproduce non-deterministic fusion



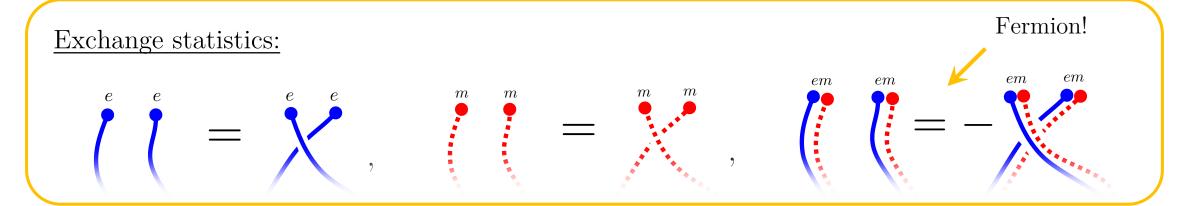
Surface code anyons properties



Surface code anyon theory

Anyon types: $\{1, e, m, em\}$ $e = \underbrace{\qquad \qquad }, \quad m = \underbrace{\qquad \qquad }, \quad em = \underbrace{\qquad \qquad }$

Fusion rules: $e \times e = 1$, $m \times m = 1$, $e \times m = em$...



(Braiding relations are determined by the exchange statistics)

Abelian anyon theories

Anyon types: $\{1, a_1, a_2, \ldots, a_n\}$

Fusion rules: $a_i \times a_j = a_k$, $a_i \times 1 = a_i$

Many Abelian anyon theories beyond anyon theories of toric codes!

Exchange statistics:

Satisfies certain consistency conditions

$$=\theta(a_i)$$

(Braiding relations are determined by the exchange statistics)

L. Wang, Z. Wang 2020

Classification of 2D topological Pauli stabilizer codes

Do Pauli stabilizer exotic th

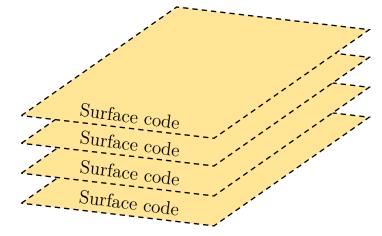
Yes!

code?

No-go theorem: every translation invariant Pauli stabilizer code in 2D is constant-depth equivalent to layers of surface codes

• Shown rigorously for prime-dimensional qudits

What about composite-dimensional qudits, continuous variables, boundaries of 3D systems, mixed states?!



On prime-dimensional qudits

Composite-dimensional qudits

PRX Quantum 3, 010353

Double semion anyon theory

Anyon types: $\{1, b, s, \bar{s}\}$

$$b =$$

$$s =$$

$$\bar{s} =$$

Distinct from the toric code or a stack of toric codes!

Fusion rules:

$$b \times b = 1$$
.

$$s \times s = 1$$
,

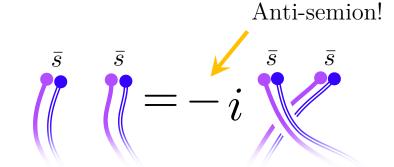
$$\bar{s} \times \bar{s} = 1$$
 ,

Semion!

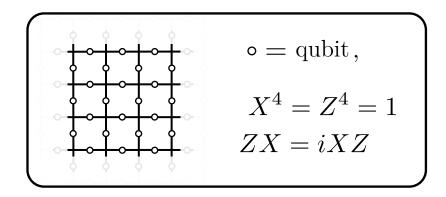
$$b \times b = 1$$
, $s \times s = 1$, $\bar{s} \times \bar{s} = 1$, $b \times s = \bar{s}$, ...

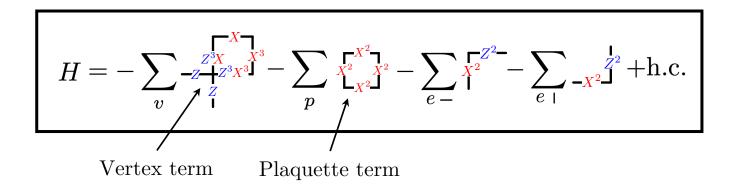
Exchange statistics:

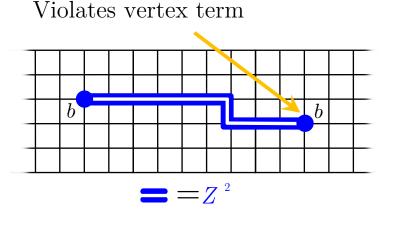
$$i = i$$

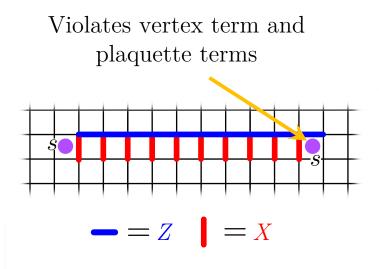


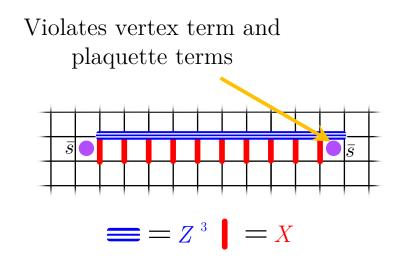
Double semion code on 4D qudits



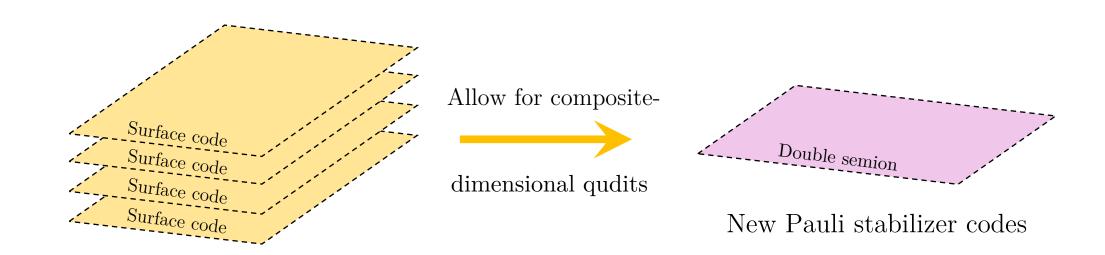








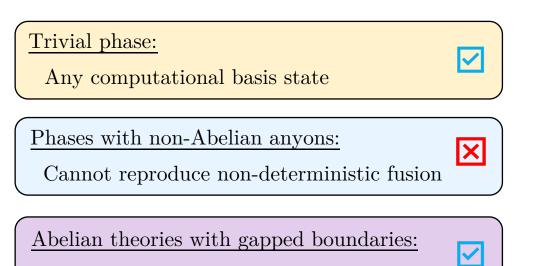
Anyon theories on composite-dimensional qudits



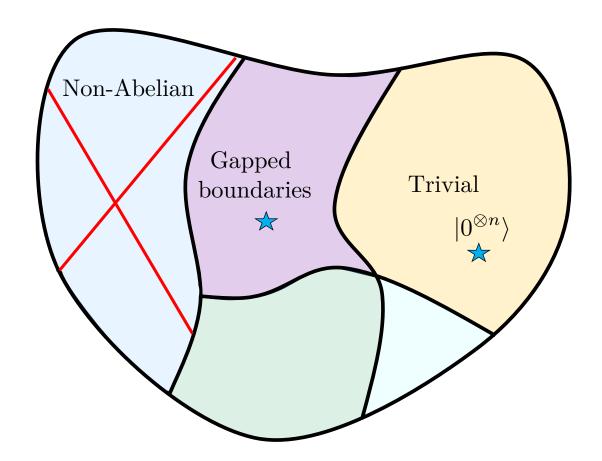
Exhausts all Abelian anyon theories that admit a gapped boundary!

Lagrangian subgroup: Subgroup of bosons \mathcal{L} , such that, for every $a \notin \mathcal{L}$, there exists $b \in \mathcal{L}$ with $\theta(ab) \neq \theta(a)\theta(b)$

Which phases admit a stabilizer state?



Use composite-dimensional qudits!



Anyon theories without gapped boundaries

Anyon theories without gapped boundaries

Non-chiral: $c_{-} = 0 \mod 8$

Chiral: $c_{-} \neq 0 \mod 8$

Chiral central charge: the chiral central charge c_{-} is defined mod 8 by

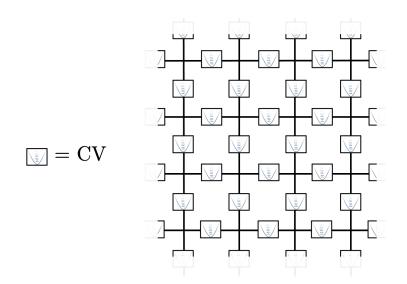
$$e^{2\pi i c_{-}/8} = \frac{1}{\sqrt{|\mathcal{A}|}} \sum_{a \in \mathcal{A}} \theta(a)$$

 $c_{-} \neq 0 \mod 8$ indicates that there are gapless chiral edge modes.

Continuous variables

arXiv:2411.04993

Anyon theories on continuous variables



Displacement operators: "Pauli operators"

(Heisenberg group)

$$X = e^{-i\hat{p}}, \quad Z = e^{i\hat{x}}$$
 $Z^t X^s = e^{ist} X^s Z^t$

$$Z^t X^s = e^{ist} X^s Z^t$$

$$H=-\sum_{v}^{Z^{-1}} \left[\begin{array}{c} Z^{-1} \\ ZX^{-\frac{\pi}{2}} \end{array} \right] - \sum_{e-1}^{Z^{-\frac{\pi}{2}}} \left[\begin{array}{c} Z \\ ZZ^{-1} \end{array} \right] - \sum_{e}^{Z^{-\frac{\pi}{2}}} \left[\begin{array}{c} Z \\ ZZ^{-\frac{\pi}{2}} \end{array} \right] + \cdots$$

Captures non-chiral Abelian anyon theories without a gapped boundary!

Which phases admit a stabilizer state?

Trivial phase:

Any computational basis state

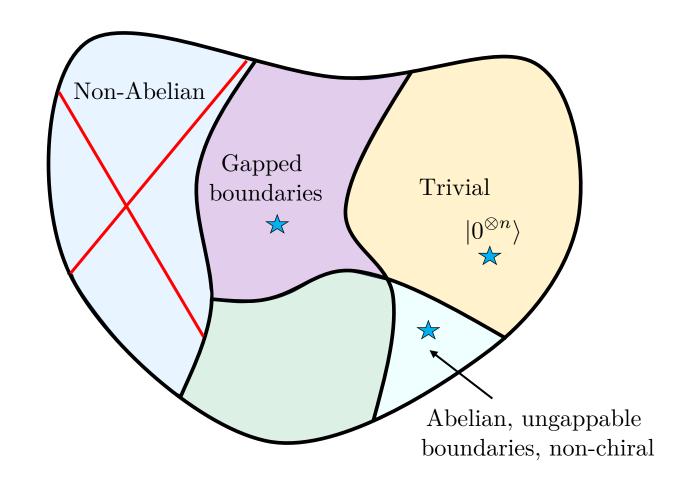
Phases with non-Abelian anyons:

Cannot reproduce non-deterministic fusion

Abelian theories with gapped boundaries:

Use composite-dimensional qudits!

Use continuous variables!



Holographic approach

PRX Quantum 3, 030326

Chiral semion anyon theory

Anyon types: $\{1, s\}$

$$s =$$

Fusion rules: \mathbb{Z}_2 group generated by s

$$s \times s = 1$$

Exchange statistics:

$$=i$$

Does not admit gapped boundaries, and is chiral

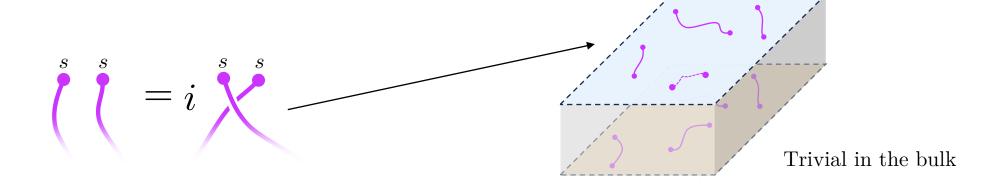
$$e^{2\pi i c_{-}/8} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$

$$\Rightarrow c_- = 1 \mod 8$$

Anyon theories on the boundary of 3D system

Chiral theories on the boundary of a 3D system?

• Edge modes do not appear!



Captures all Abelian anyon theories!

K. Walker, Z. Wang 2011

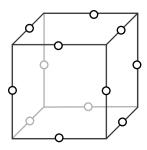
Chiral semion boundary code

Hilbert space:

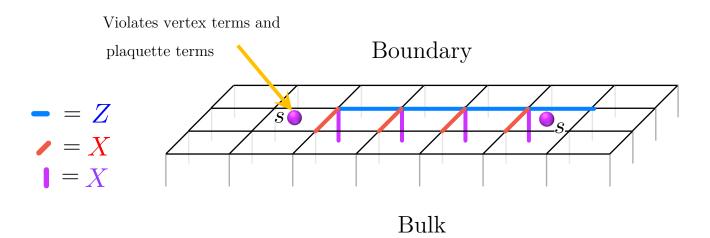
$$Z^4 = 1$$
,

$$X^4 = 1$$
,

$$ZX = i XZ$$



$$\circ = 4D$$
 qudit



Hamiltonian:

$$H = -\sum_{v} -\frac{\mathbf{X}_{\mathbf{X}_{\mathbf{Y}_{\mathbf{X}_{\mathbf{Y}_{\mathbf{Z}}}}}^{\dagger} - \sum_{z} \mathbf{X}_{\mathbf{X}_{\mathbf{Y}_{\mathbf{Z}}}}^{\dagger} - \sum_{z} \mathbf{X}_{\mathbf{X}_{\mathbf{Y}_{\mathbf{Z}}}}^{\dagger} - \sum_{e} \mathbf{X}_{\mathbf{X}_{\mathbf{Y}_{\mathbf{Z}_{\mathbf{Y}_{\mathbf{Z}}}}}^{\dagger} - \sum_{e} \mathbf{X}_{\mathbf{X}_{\mathbf{Y}_{\mathbf{Z}_{\mathbf{Y}_{\mathbf{Z}_{$$

Which phases admit a stabilizer state?

Trivial phase:

Any computational basis state

Phases with non-Abelian anyons:

Cannot reproduce non-deterministic fusion

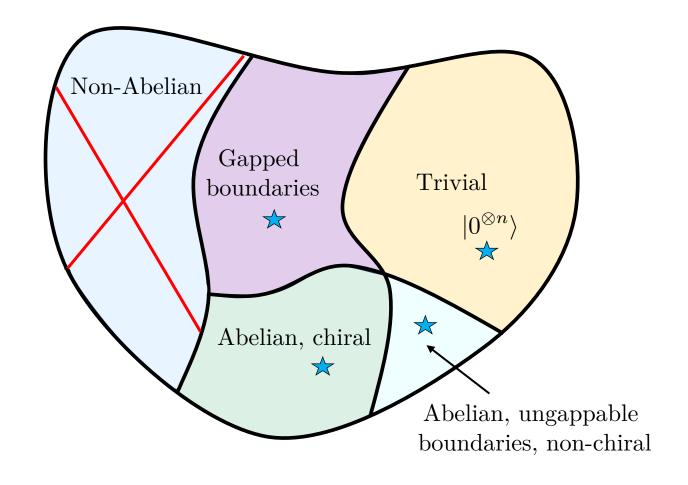
Abelian theories with gapped boundaries:

Use composite-dimensional gudits!

Use continuous variables!

Abelian, ungappable boundaries, chiral:

Boundaries of 3D!

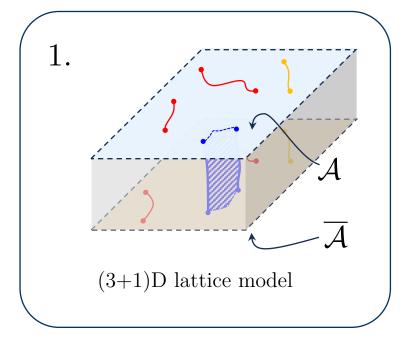


Mixed states

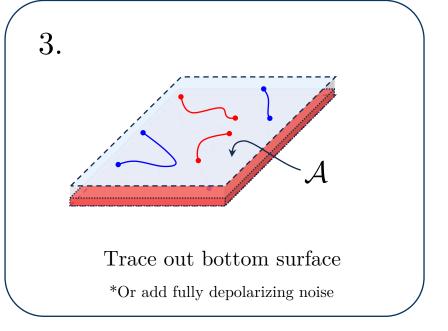
Quantum **7**, 1137

arXiv:2405.02390

Anyon theories of mixed states



2. Quasi-(2+1)D lattice model



Captures all Abelian anyon theories!

Which phases admit a stabilizer state?

Trivial phase:

Any computational basis state

Phases with non-Abelian anyons:

Cannot reproduce non-deterministic fusion

Abelian theories with gapped boundaries:

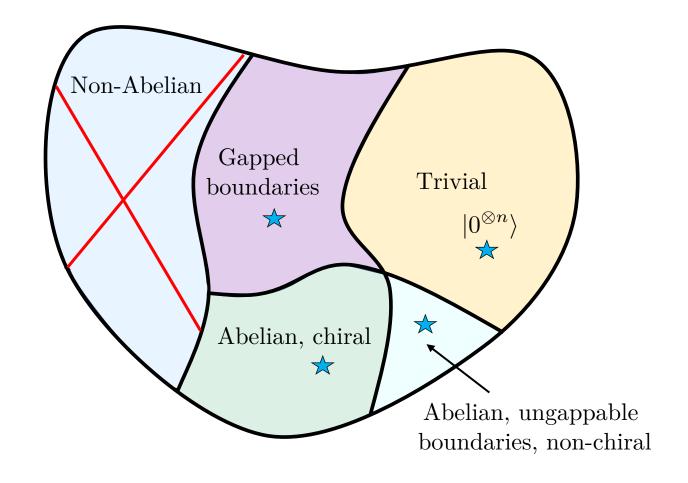
Use composite-dimensional gudits!

Abelian, ungappable boundaries, non-chiral:

Use continuous variables!

Abelian, ungappable boundaries, chiral:

Boundaries of 3D or mixed states!

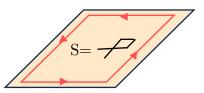


Open questions

Quantifying non-stabilizerness in non-Abelian theories

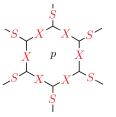
Relation to difficulty of preparation or universality?

Stabilizer models without gapped boundaries on qudits?



Current folklore: not possible for commuting projector Hamiltonians

Abelian anyon theories on qubits as a source of magic?



Quantify the minimum nonstabilizerness?

Symmetry-enforced magic in 1D systems with SSB?

Fusion-category symmetries enforce magic?

Stabilizer representations of 3D quantum phases of matter?

